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Abstract: Adsorption isotherms play an important role in the design and analysis
of adsorption processes. These isotherms are estimated empirically from measure-
ments of adsorption process variables. Unfortunately, these measurements are
usually contaminated with errors that degrade the accuracy of estimated iso-
therms. Therefore, these errors need to be filtered for improved isotherm estima-
tion accuracy. Multiscale wavelet-based filtering has been shown to be a powerful
filtering tool. In this work, multiscale filtering is utilized to improve the estima-
tion accuracy of the Langmuir adsorption isotherm in the presence of measure-
ment noise in the data by developing a multiscale isotherm estimation
algorithm. The idea behind the algorithm is to use multiscale filtering to filter
the data at different scales, use the filtered data from all scales to construct multi-
ple isotherms, and then select among all scales the isotherm that best represent
the data based on a cross-validation mean squares error criterion. The deve-
loped multiscale isotherm estimation algorithm is shown to outperform the
conventional time-domain estimation method through a simulated example.
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INTRODUCTION

The presence of toxic heavy metals (such as Lead, Nickel, and Zinc) over
the permissible limits in the environment is considered a severe public
health problem (1,2). Water containing these metals and their compounds
arise from many chemical processes, such as electroplating and inorganic
dye manufacturing. Therefore, it is very important to remediate such
water from these pollutants before it can be used. Several water purifica-
tion methods have been utilized, and include chemical precipitation (3)
reverse osmosis (4), electro-dialysis, ion exchange, and adsorption, which
is the focus of this work.

Adsorption utilizes the capacity of an adsorbent to remove certain
substances from a solution. Activated carbon is an adsorbent that is
widely used in Water treatment, advanced wastewater treatment, and
the treatment of certain organic industrial wastewaters (5,6). Adsorption
may be classified as physical adsorption or chemical adsorption. Physical
adsorption is primarily due to van der Waals forces and is a reversible
occurrence. When the molecular forces of attraction between the solute
and the adsorbent are greater than the forces of attraction between the
solute and the solvent, the solute will be adsorbed onto the adsorbent sur-
face. An example of physical adsorption is the adsorption by activated
carbon. Activated carbon has numerous capillaries within the carbon
particles, and the surface available for adsorption includes the surface
of the pores in addition to the external surface of the particles. In chem-
ical adsorption, a chemical reaction occurs between the solid and the
adsorbed solute, and the reaction is usually irreversible. Chemical
adsorption is rarely used in environmental engineering; however, physical
adsorption is widely used.

When the adsorbent is placed in a solution containing the contami-
nant (adsorbate) and the slurry is agitated or mixed to give adequate
contact, adsorption of the contaminant occurs. The contaminant concen-
tration in the solution will decrease from an initial concentration, C,, to
an equilibrium value, C,, if the contact time is sufficient during the slurry
test. Usually, equilibrium occurs within about 1 to 4 hours. By employing
a series of slurry tests, it is usually possible to obtain a relationship
between the equilibrium concentration (C.) and the amount of organic
substance adsorbed per unit mass of the adsorbent (qe).

The adsorption capacity depends on several factors, such as the
adsorbent type, its surface area, and its internal porous structure.
Additionally, since the attachment of the pollutant can be physical or
chemical, the chemical and physical structures and the electrical charge
of the adsorbent can significantly influence the interactions with the
adsorbates, and thus the effectiveness of pollutant removal.
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Adsorption processes are characterized by their kinetic and
equilibrium isotherms. The adsorption isotherms specify the equilibrium
surface concentration of the adsorbate as a function of its bulk con-
centration. Several mathematical models have been proposed to describe
the equilibrium isotherms of adsorption. Some of the most popular
models include Langmuir, Freundlich, Redlich-Peterson, and Sips.
A summary of these isotherms is provided in (7,8). Even though most
of these adsorption isotherms are derived based on some theoretical
assumptions about the adsorption mechanism, they involve model
parameters that need to be estimated from experimental measurements
of the process variables. For example, the Langmuir isotherm for single
component removal has the following form (9,10):

_ QG "
= 1¥nC,
where, C, is the equilibrium liquid phase concentration (mg/1), ¢, is the
equilibrium solid phase concentration (mg/g), Q. (mg/g) is the maximum
amount of adsorbate per unit weight of the adsorbent to form a complete
monolayer, and b (I/mg) is a constant related to the affinity between
the adsorbent and adsorbate. In the above Langmuir model, Q. and b
are model parameters to be estimated using the initial concentration
and measurements of the equilibrium concentration, C..

Unfortunately, measurements of the equilibrium concentration, C,,
are usually contaminated with measurement noise due to random errors,
human errors, or malfunctioning sensors. The presence of such measure-
ment noise, especially in large amounts, can degrade the accuracy of the
estimated isotherm parameters, which in turn limits the ability of the
isotherm to accurately predict the adsorption capacity of the process in
which the isotherm is used. Therefore, such noise needs to be filtered
for improved estimation of the isotherm parameters.

Noise removal from data is not a simple task since practical measure-
ments are usually multiscale in nature, meaning that they contain features
and noise occupying different locations in time and frequency (11). Filter-
ing techniques, however, usually classify noise as high frequency features,
and filter the data by removing features with frequency higher than a
defined frequency threshold. Since multiscale data may contain corre-
lated noise with low frequency as well as important features with high
frequency, noise removal from such data becomes challenging. Thus,
multiscale modeling techniques are needed in the estimation of adsorp-
tion isotherms to account for this multiscale nature of the data (12).

The objective of this work is to develop a multiscale estimation
algorithm that reduces the effect of measurement noise on the accuracy
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and prediction of estimated Langmuir isotherm. The rest of this report is
organized as follows. In the next Section, time domain estimation of the
Langmuir adsorption isotherm is presented. Then, multiscale representa-
tion and filtering of data are discussed. Then, the formulation, and
algorithm used in multiscale estimation of the Langmuir isotherm are
presented, followed by an illustrative example that demonstrates the per-
formance of the developed multiscale Langmuir estimation algorithm.
Finally, the paper is concluded with few remarks.

MODEL REPREENTATION AND ESTIMATION OF THE
LANGMUIR ISOTHERM

Problem Statement

Given the initial concentration data {C,(1) C,(2)... C,(n)} and measure-
ments of and the equilibrium concentrations, {C.(1) C.(2)...C.(n)},
which are assumed to be contaminated with additive zero-mean Gaussian
noise, i.e., C, = C, + &, where e.~ N(0, 02), it is desired to estimate the
isotherm parameter, Q. and b, that satisfy the Langmuir relationship:

_ ObC(k)

qe(k) = T@(l{)

, kell,n]. (2)
Note that the equilibrium uptake, ¢., is not measured and is
calculated as follows (13):

Qe(k) _ (Ca(k) — Ce(k))V (3)

w

where, Vis the volume of the solution and w is the mass of the adsorbent.

Langmuir Model Representation

The Langmuir isotherm shown in equation (2) is nonlinear and can be
linearized as follows,

Ce(k) (1 1
qe(k) B O, ch.

Defining: o (k) =G, (k)/qe(k): (k)= Ce(k), a;= 1/Qc, and
ay=1/Q.b, the linearized isotherm shown in equation (4) can be written

)q(k) " 4)
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in matrix form as follows:

(1) ar(l) 1
061(2) 062(2) 1 a
PP . 5
. \ ,
op(n) op(n) 1 a
—_—

which can be written more compactly as,

Y = Xa.

Isotherm Estimation Using Least Squares Regression

The linearized model parameter vector, a, can be estimated using Ordin-
ary Least Squares (OLS) regression by solving the following minimiza-
tion problem (14),

{a} = argmin(Y — Xa)" (Y — Xa), (6)
a
which has the following closed form solution,

a=X"x)"'xTy. (7)

Once the parameters a; and a, are estimated, the original isotherm
parameters can be computed as follows:

0, =1/a; and b =1/(0,a).

It can be seen from equation (6) that the OLS estimation method
relies on minimizing the prediction error of the model output, Y,
when estimating the isotherm parameters. This is because it assumes
that the input matrix, X, is noise-free. However, if the equilibrium
concentration data are noisy, then the matrix, X is also noisy, which
violates the basic assumption of this approach. Therefore, in the
presence of measurement noise in the data, data filtering can improve
the estimation accuracy of isotherm parameters. One effective way to
do that is through multiscale representation of data, which is
presented next.
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MULTISCALE REPRESENTATION AND FILTERING OF
PROCESS DATA

Multiscale Data Representation

A proper way of analyzing real data requires their representation at
multiple scales. This can be achieved by expressing the data as a
weighted sum of orthonormal basis functions, which are defined in both
time and frequency, such as wavelets. Wavelets are a computationally
efficient family of multiscale basis functions. A signal can be repre-
sented at multiple resolutions by decomposing the signal on a family
of wavelets and scaling functions. The signals in Figs. 1 (b, d, and f)
are at increasingly coarser scales compared to the original signal in
Fig. 1(a). These scaled signals are determined by projecting the original
signal on a set of orthonormal scaling functions of the form (15),

di(t) = V277 (271 — k), (8)

or equivalently by filtering the signal using a low pass filter of length r,
h=1[h hy...h], derived from the scaling functions. On the other hand,
the signals in Figs. 1(c, e, and g), which are called the detail signals,
capture the differences between any scaled signal and the scaled signal
at the finer scale.

(@)
original
signal

l"1

(c)
first scaled first detail
signal signal
H2
(e)
(d) second detail
second scaled
signal
U]
third scaled thlrd detaul
signal signal

signal
Figure 1. A schematic diagram of data representation at multiple scales.
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These detail signals are determined by projecting the signal on a set
of wavelet basis functions of the form (15),

Vi(t) = V299 (271 — k), ©)

or equivalently by filtering the scaled signal at the finer scale using a high
pass filter of length r, g = [g1 &> ...g], derived from the wavelet basis
functions. Therefore, the original signal can be represented as the sum
of all detail signals at all scales and the scaled signal at the coarsest scale
as follows (15),

n2~’ J n27
Z and (1) + Z Z dicW (1) (10)
j=1 k=1

where, j, k, J, and n are the dilation parameter, translation parameter,
maximum number of scales (or decomposition depth), and the length
of the original signal, respectively (16,17).

Fast wavelet transform algorithms of O(n) complexity for a discrete
signal of dyadic length have been developed (15). For example, the wave-
lets and scaling functions coefficients at a particular scale (j), d; and
a;, can be computed in a compact fashion by multiplying the scaling
coefficient vector at the finer scale, ¢;_,, by the matrices, G; and H,,
respectively, i.e.,

aj = }Ijajflv and d] = Gjaj,l,
where,
(hy . b 0 07
0O h . h O
H; = , and
L 0 0 hl hr_ n2—ixn2-J
[g1 - & 0 07
0 . » 0
L 0 0 81 . 8r d wa-ixn2-i

Note that the length of the scaling and detail signals decreases dyadically
at coarser resolutions (higher j). In other words, the length of scaled sig-
nal at scale (j), is half the length of scaled signal at the finer scale, (j—1).
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This is due to down-sampling, which is used in discrete wavelet
transform. Just as an example to illustrate the multiscale decomposition
procedure and to introduce some terminology, consider the following
discrete signal, Y,, of length (n) in the time domain (i.e., j=0),

Yo = [o(1) yo(2) - volk) - yo(m)]", (12)

the scaled signal approximation of Y, at scale (j), which can be
written as,

_ivT
Y= [y(1) - ylk) - y(m27)]", (13)
can be computed as follows,
Y=HY . =HH_ . HY,. (14)

Note that this decomposition algorithm is batch, i.e., it requires
the availability of the entire data set beforehand. An on-line wavelet
decomposition algorithm has also been developed and used in data
filtering (18).

Multiscale Data Filtering

Multiscale filtering using wavelets is based on the observation that
random errors in a signal are present over all wavelet coefficients while
deterministic changes get captured in a small number of relatively large
coefficients (11, 19-23). Thus, stationary Gaussian noise may be removed
by a three step method (19):

1. Transform the noisy signal into the time-frequency domain by
decomposing the signal on a selected set of orthonormal wavelet basis
functions.

2. Threshold the wavelet coefficients by suppressing coefficients smaller
than a selected value.

3. Transform the thresholded coefficients back into the original domain.

Donoho and coworkers have studied the statistical properties of
wavelet thresholding and have shown that for a noisy signal of length
n, the filtered signal will have an error within O(log n) of the error
between the noise-free signal and the signal filtered with a priori
knowledge about the smoothness of the underlying signal (20).
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Selecting the proper value of the threshold is a critical step in the
rectification process, and several methods have been devised. For good
visual quality of the filtered signal, the Visushrink method determines
the threshold as (21),

tj:O'j\/ZIOgl’l (15)

where, 7 is the signal length and o; is the standard deviation of the errors
at scale j, which can be estimated from the wavelet coefficients at that
scale by

0 = 06745med1an{|djk|} (16)

Other methods for determining the threshold are described in (21).

The wavelet coefficients may be thresholded by hard or soft thresh-
olding. Hard thresholding eliminates coefficients smaller than a thresh-
old, whereas soft thresholding also shrinks the larger coefficients
towards zero by the value of the threshold. Hard thresholding can lead
to better reproduction of peak heights and discontinuities, but at the
price of occasional artifacts that can roughen the appearance of the fil-
tered signal, while soft thresholding usually gives better visual filtering
quality and fewer artifacts (22). In this work, soft thresholding will be
used in filtering adsorption data.

MULTISCALE ESTIMATION OF ADSORPTION ISOTHERMS
Multiscale Formulation of Adsorption Isotherms

The main objective in multiscale isotherm estimation is to reduce the
effect of measurement noise in the data on the estimation of isotherm
parameters using multiscale filtering. Therefore, the idea is to filter the
measured equilibrium concentration data using different decomposition
depths, estimate multiple isotherms using the filtered data from these
scales, and finally select among all estimated isotherms the one that
provides the best prediction.

Denoting the filtered equilibrium concentration data at scale depth
() as C,, {k), k[l n], the isotherm obtained using the filtered data at
decomposition scale (j) can be expressed as,

;D Cei(k
i - LAt
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where, the equilibrium uptake can be computed using the equilibrium
concentration and the initial concentration as follows,

(CO(k) - Ce,/(k)) V.

qej(k) = "

(18)

Multiscale Isotherm Estimation

The linearized form of the isotherm shown in equation (17) at scale (j) can
be written as follows,

C()’j(k) _ L ' 1
qej(k) (Qc,}') Ces (k) + 0cjb; (19)

Defining: o (k) = Cej(k)/qe k), o, (k) =C, (k), a1; =1/0O.;, and
aj = 1/Q.;b;, equation (19) can be expressed in matrix form as,

ap;(1) (1) 1
@] @ 1],
A { ,] . (20)
a2,
oy ;(n) arj(n) 1 qj
—_————
Y; Xj
which can be written more compactly as,
Yj = X/a/-. (21)

The linearized isotherm parameter vector at scale (j), a;, can be estimated
using least squares regression as follows,

4= (X7 x%) " X", (22)

Once the parameters a;, ; and a,_; are estimated, the original isotherm
parameters can be computed as follows:

0. = l/a, (23)

and,

by = 1/(0Q.jéz,)- (24)
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Multiscale Isotherm Estimation Algorithm
The multiscale isotherm estimation algorithm can be outlined as follows:

1. Filter the measured equilibrium concentration data, C,, using different
decomposition depths (j), j€[1, J].
2. Using the filtered data from each decomposition depth:
a. Compute the adsorption uptake using the filtered equilibrium
concentration data using equation (18)
b. Construct a linearized model of the adsorption isotherm as shown
in equation (21)
c. Estimate the linearized model parameters using least squares
regression as shown in equation (22)
d. Compute the original model parameters using the estimated line-
arized model parameters using equations (23) and (24)
e. Compute the cross validation mean squares error as follows (21),

CVMSE()) = %Z {(Cj(k) - E?e(k))z], (25)
k=1
where,
Ci(k) = %[Cg(k = 1)+ Ce(k +1)].

3. Select among all scales, the adsorption model with the minimum
CVMSE as the optimum isotherm.

ILLUSTRATIVE EXAMPLE

In this section, the performance of the multiscale adsorption estimation
algorithm described earlier is illustrated through a simulated example,
where Q.= 150 (mg/g), b=0.15 (1/mg). Equations (2) and (3) are used
to generate data (assuming w=0.1g and V=0.05m>), and the data are
assumed to be noise-free. Then, the equilibrium concentration data are
contaminated with zero mean Gaussian noise. Two different levels of
noise are used (¢°= 10 and 20), which correspond to C, signal-to-noise
ratios of 118.5 and 80.0, respectively.

To illustrate the advantages achieved by multiscale filtering, the
simulated adsorption data for the case where ¢ =20 are filtered at four
scales using the Daubechies-2 filter, and the results are illustrated in
Fig. 2. Figure 2 clearly shows the advantages of multiscale filtering,
and that the improvement achieved is up to a certain scale above which
the filtering accuracy deteriorates.
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scale = 1 scale =2

140 140

——— noise-free —— noise-free
120 120 .
noisy noisy
o filtered filtered

100 100
8of | 80
60 60

0 50 100 0 50 100

scale =3 scale=4

140

— no?se-free ——— noise-free
noisy 120 noisy
. filtered filtered
c 100
80f/
60
50 100 0 50 100
c C
e e

Figure 2. Multiscale filtering of adsorption data at different scales for the case where
a2 =20 [Dotted lines: noise-free, solid lines: filtered, and dots: measurements].

To make statistically valid conclusions about the performances of the
time domain method and the multiscale isotherm estimation algorithm, a
Monte Carlo simulation of 100 realizations is performed, and the results
are presented in Tables 1 and 2.

Table 1 compares the estimated parameters and uptake prediction
mean squares errors obtained using the time domain and the multiscale
estimation algorithms. These mean squares errors are computed with
respect to the noise-free values. Table 1 shows that there is a clear advan-
tage of the multiscale algorithm over the time domain method for both

Table 1. Comparison between the parameter estimation mean square errors
(MSE) of the time-domain and multiscale estimation methods

2=10 a2=20

0. b(10%) qe 0. b(10%) qe
Estimation method MSE MSE MSE MSE MSE MSE

Time-domain 0.50 5.6 16.1 1.34 2.16 41.0
Multiscale 0.38 4.7 4.9 0.83 1.38 8.9




08: 58 25 January 2011

Downl oaded At:

2522 M. N. Nounou, H. N. Nounou, and A. Abdel-Wahab

Table 2. Comparison between the parameter estimation mean square errors
(MSE) at multiple scales [numbers in parenthesis indicate the percentage each
scale is selected as optimum]

?=10 6?=20
0. b(10%) e 0. b(10°) qe

Scale MSE MSE MSE MSE MSE MSE

0 0.5 5.6 16.1 (0) 1.34 2.16 41.0 (0)

1 0.38 6.1 6.3 (5) 1.04 1.6 14.5 (7)

2 0.38 44 4.6 (95) 0.78 1.35 8.24 (93)
3 0.39 4.8 4.2 (0) 0.98 1.76 7.42 (0)
4 0.43 6.4 6.7 (0) 1.05 1.73 11.74 (0)

the parameters and uptake prediction. Table 2, on the other hand,
presents the estimation mean squares errors at various scales also for
the isotherm parameters and predicted uptake. Table 2 shows that there
is an improvement in the estimation accuracy at coarser scales up to a

c 40 40

(1]

£

-8 20+ 20

0

£ 0 0
146 148 150 152 154 0.12 0.14 0.16 0.18 0.2
40 40

"

o 20+ 20

(1]
0 ' 0 '
146 148 150 152 154 0.12 0.14 0.16 0.18 02
40 40 -

o

n

o 20+ 20

[}

@
0 0
146 148 150 152 154 0.12 0.14 0.16 0.18 0.2
40 40

[sp]

n

o 20+ 20

[\

2
0 0
146 148 150 152 154 0.12 0.14 0.16 0.18 0.2
40 40

.

n

© 20+ 20

[\

2
0 0
146 148 150 152 154 0.12 0.14 0.16 0.18 0.2

Q b

c

Figure 3. Comparison between the estimated isotherm parameters at multiple
scales.
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certain scale after which the estimation quality deteriorates. That is why
it is important to make a good selection of the estimation scale. Table 2
also lists in parenthesis the percentage each scale is selected as optimum
using the cross validation error criterion shown in equation (25). These
numbers indicate that reasonable approximation of the optimum scale
is achieved by the CVMSE criterion.

The improvements in parameter estimation and uptake predictions
are also illustrated in Figs. 3 and 4 for the case where o> =20. Figure 3
shows histograms of the estimated parameters at different scales, and
Fig. 4 shows the predictions of the adsorption uptake at different scales.
These figures show the advantages of multiscale estimation of the Lang-
muir isotherm. For example, in Fig. 3, it can be seen that the histogram of
the estimated parameters are more centered around the true value of the
parameters at scale 2, which is the optimum scale for model estimation.
Also, Fig. 4 shows the advantage of multiscale isotherm estimation even
though the predicted uptakes at different scales look similar due to the
magnitude of the uptake relative to the prediction errors. The reason
behind this improvement (which is shown in Tables 1 and 2 and Figs. 3

scale =1 scale =2
140+ 140
noise-free noise-free
120} time-domain 120 time-domain
° —F MS MS
% 100} 100
80+ 80
60 : 60 : .
50 100 0 50 100
scale =3 scale =4
140+ " 140
~——— noise-free ——— noise-free
1201 time-domain 120 time-domain
—F MS —F MS
U_ﬂ)
100 100
80+ 80
60 : 60 .
0 50 100 0 50 100
C C
e e

Figure 4. Comparison between the uptake prediction at multiscale and its
prediction in the time-domain.
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and 4) is due to the noise removal abilities of multiscale filtering, which is
illustrated in Fig. 2.

CONCLUSIONS

In this paper, a new multiscale algorithm is developed to improve the esti-
mation and prediction accuracies of the Langmuir adsorption isotherm
from noisy measurements. The algorithm relies on denoizing the data
using multiscale filtering at different decomposition depths, constructing
multiple isotherms at all scales, and then selecting among all scales the
optimum Langmuir isotherm based on a cross-validation error criterion.
The performance of the developed multiscale estimation algorithm is
illustrated through a simulated example that shows its advantages over
the time-domain estimation method.
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